

Fixation au mortier de synthèse pour charges lourdes, pour béton non fissuré

MAXIMA

APPLICATION

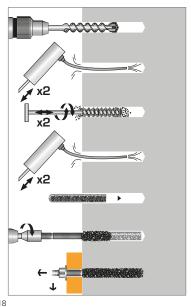
- Fixation de charpentes métalliques
- Fixation de machines (résiste aux vibrations)
- Fixation de silos de stockage, supports de tuyauteries
- Fixation de panneaux indicateurs
- Fixation de barrières de sécurité

MATIÈRE

Tige filetée version zinguée:

Tige filetée M8-M16 :

Acier façonné à froid NF A35-053


- Tige filetée M20-M30 :
- 11 SMnPb37 NFA 35-561
- Ecrou : Acier classe 6 ou 8 NF EN 20898-2
- Rondelle : Acier DIN 513
- Protection : zinguée 5 µm min.

NF E25-009

Tige filetée version inox:

- Tige filetée M8-M24 : A4-70 selon ISO 3506-1
- Ecrou : Acier inoxydable A4-80, NF EN 10088-3
- Rondelle: Acier inoxydable A4, NF EN 20898-2

MÉTHODE DE POSE

Caractéristiques techniques

Dimensions	Prof. ancrage min.	Epaisseur max. pièce à fixer	Epais. min. support	Ø filetage	Prof. de perçage	Ø perçage	Ø passage	Long. totale tige	Long. totale capsule	Couple de serrage	Co tige f		Code capsule
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Nm)	version	version	
	h _{ef}	t _{fix}	h _{min}	d	ho	do	df	L	Lp	Tinst	zinguée	inox A4	
M8X110	80	15	110	8	80	10	9	110	80	10	050950	052400	051500
M10X130	90	20	120	10	90	12	12	130	85	20	050960	052410	051510
M12X160	110	25	140	12	110	14	14	160	107	30	050970	052420	051520
M16X190	125	35	160	16	125	18	18	190	107	60	050980	052440	051530
M20X260	170	65	220	20	170	25	22	260	162	120	655220	052450	051540
M24X300	210	63	265	24	210	28	26	300	200	200	655240	052470	051550
M30X380	280	70	350	30	280	35	33	380	260	400	050940	-	051560

Propriétés mécaniques des chevilles

Dimension	is	M8	M10	M12	M16	M20	M24	M30
Tige MAXIMA	version zinguée							
f _{uk} (N/mm ²)	Résistance à la traction min.	600	600	600	600	520	520	520
f _{yk} (N/mm ²)	Limite d'élasticité	420	420	420	420	420	420	420
$\mathbf{M^0}_{\mathbf{rk,s}}$ (Nm)	Moment de flexion caractéristique	22	45	79	200	301	520	1052
M (Nm)	Moment de flexion admissible	11,0	22,5	39,5	100	150	160	525
Tige MAXIMA	Tige MAXIMA version inox A4							
f _{uk} (N/mm ²)	Résistance à la traction min.	700	700	700	700	700	700	-
f _{yk} (N/mm ²)	Limite d'élasticité	350	350	350	350	350	350	-
M ⁰ _{rk,s} (Nm)	Moment de flexion caractéristique	26	52	92	233	454	786	-
M (Nm)	Moment de flexion admissible	12	23	42	122	206	357	-
As (mm ²)	Section résistante	36,6	58	84,3	157	227	326,9	-
W el (mm ³)	Module d'inertie en flexion	31,2	62,3	109,2	277,5	482,4	833,7	-

Temps de prise avant application d'une charge

Température	Temps de polymérisation					
	Béton sec	Béton humide				
T ≥ 20°C	20 min.	40 min.				
10°C < T < 20°C	30 min.	60 min.				
0°C < T ≤ 10°C	1 heure	2 heures				
-5°C < T ≤ 0°C	5 heures	10 heures				

Résistance aux agents chimiques des capsules MAXIMA

Substances chimiques	Concentration (%)	Résistance chimique
Acide nitrique	< 20	(+)
Acide nitrique	20 - 70	(0)
Acide phosphorique	< 10	(+)
Acide sulfureux	100	(0)
Acide sulfurique	≤ 30	(+)
Alcool éthylique	≤ 15	(+)
Bière	100	(+)
Dioxyde de carbone	100	(+)
Essence moteur sans benzène		100
Fluorure d'hydrogène	< 50	(+)

Substances chimiques	Concentration (%)	Résistance chimique
Ammoniac	100	(+)
Ethylène-glycol	100	(+)
Heptane	100	(0)
Hexane	100	(0)
Méthanol	≤ 15	(0)
Monoxyde de carbone	100	(+)
Poudre à récurer	100	(+)
Perchloréthylène	100	(0)
Peroxyde d'hydrogène	≤ 40	(0)
Potasse caustique	100	(+)
Ciment en suspension	solution saturée	(+)

Résistante (+): Les échantillons en contact avec les substances n'ont pas présenté d'endommagements visibles tels que des fissures, surfaces attaquées, angles éclatés ou gonflements importants. Sensible (a): à utiliser avec précautions en fonction de l'exposition du terrain d'utilisation. Prendre des précautions. Les échantillons en contact avec la substance ont légèrement attaqué le matériau.

Les charges spécifiées sur cette page permettent de juger les performances du produit, mais ne peuvent pas être utilisées pour le dimensionnement. Il faut utiliser les performances données dans les pages suivantes (3/4 et 4/4).

Charges moyennes de ruine (N_{Ru,m}, V_{Ru,m})/résistances caractéristiques (N_{Rk}, V_{Rk}) en kN

Les charges moyennes de ruine sont issues des résultats d'essais dans les conditions admissibles d'emploi, et les résistances caractéristiques sont déterminées statistiquement.

TRACTION

Dimensions	M8	M10	M12	M16	M20	M24	M30
h _{ef}	80	90	110	125	170	210	280
$N_{Ru,m}$	25,9	44,1	67,2	93,2	105,4	237,6	297,7
N _{Rk}	18,3	25,7	37,7	57,1	80,8	119,7	151,9

CISAILLEMENT

Dimensions	M8	M10	M12	M16	M20	M24	M30
$V_{Ru,m}$	13,1	21,7	23,32	45,2	73,7	114,7	168,3
V _{Rk}	10,8	15,8	19,6	37,2	69,5	96,6	146,5

Charges limites ultimes (N_{Rd}, V_{Rd}) pour une cheville en pleine masse en kN

$$N_{Rd} = \frac{N_{Rk} \, {}^*}{\gamma_{Mc}}$$

*Valeurs issues d'essais

$$V_{Rd} = \frac{V_{Rk} *}{\gamma_{Ms}}$$

TRACTION

Dimensions	M8	M10	M12	M16	M20	M24	M30
h _{ef}	80	90	110	125	170	210	280
N_{Rd}	10,2	14,3	20,9	31,7	44,9	66,5	84,4

 $\gamma_{Mc}=1.8$

CISAILLEMENT

Dimensions	M8	M10	M12	M16	M20	M24	M30	
V_{Rd}	7,6	11,0	13,7	26,0	46,3	64,4	97,7	
$\gamma_{\rm Ms}=1,43$ pour M8 à M16 et $\gamma_{\rm Ms}=1,5$ pour M20 à M30								

Charges recommandées (Nrec, Vrec) pour une cheville en pleine masse en kN

$$N_{rec} = \frac{N_{Rk} *}{\gamma_{M} \cdot \gamma_{F}}$$

*Valeurs issues d'essais

$$V_{\text{rec}} = \frac{V_{\text{Rk}} *}{\gamma_{\text{M}} \cdot \gamma_{\text{F}}}$$

TRACTION

Dimensions	M8	M10	M12	M16	M20	M24	M30
h _{ef}	80	90	110	125	170	210	280
N _{rec}	7,3	10,2	14,9	22,7	32,0	47,5	60,3

 $\gamma_F=1.4$; $\gamma_{Mc}=1.8$

CISAILLEMENT

Dimensions	M8	M10	M12	M16	M20	M24	M30
V_{rec}	5,4	7,9	9,8	18,6	33,1	46,0	69,8
$\gamma_{F} = 1.4 \; ; \; \gamma_{Ms} =$	1,43 p	our M8 à	M16 et -	$y_{Ms} = 1,5$	pour Ma	20 à M30)

MAXIMA

SPIT Méthode CC (valeurs issues de l'ETE)

TRACTION en kN

Résistance à la rupture extraction-glissement pour béton sec, humide (1) et immergé (2)

 $N_{Rd,p} = N_{Rd,p}^0$. f_b

N ^O Rd,p					Ré	sistance	à l'ELU -
,p	rup	ture extr	action-gli	issement	pour bét	on sec et	humide
Dimensions	M8	M10	M12	M16	M20	M24	M30
h _{ef}	80	90	110	125	170	210	280
-40°C à +40°C	8,9	13,9	22,2	33,3	41,7	63,9	77,8
-40°C à +80°C	5,0	8,9	13,9	22,2	27,8	41,7	52,8
						sistance	
		rupture	extracti	on-glisse	ment pou	r béton i	mmergé
-40°C à +40°C	-	-	19,0	28,6	35,7	54,8	66,7
-40°C à +80°C	-	-	11,9	19,0	23,8	35,7	45,2
4 6 4 11							

 $\gamma_{Mc}=$ 1,8 (humide) et $\gamma_{Mc}=$ 2,1 (immergé)

¬ Résistance à la rupture cône béton pour béton sec, humide (1) et immergé (2)

 $N_{Rd,c} = N^0_{Rd,c}$. f_b . Ψ_s . $\Psi_{c,N}$

N ⁰ _{Rd,c}	rup	ture extr	action-gl	issement		sistance on sec et	
Dimensions	M8	M10	M12	M16	M20	M24	M30
h _{ef}	80	90	110	125	170	210	280
-40°C à +40°C	8,9	13,9	22,2	33,3	41,7	63,9	77,8
-40°C à +80°C	5,0	8,9	13,9	22,2	27,8	41,7	52,8
						sistance	
		rupture	extracti	on-glisse	ment pou	r béton i	mmergé
-40°C à +40°C	-	-	19,0	28,6	35,7	54,8	66,7
-40°C à +80°C	-	-	11,9	19,0	23,8	35,7	45,2

 $\gamma_{Mc} = 1.8$ (humide) et $\gamma_{Mc} = 2.1$ (immergé)

Résistance à la rupture acier

N _{Rd,s}	nce à l'EL	U - ruptu	re acier				
Dimensions	M8	M10	M12	M16	M20	M24	M30
Tige MAXIMA Zn.	12,9	20,5	29,8	55,6	79,2	114,1	182,6
Tige MAXIMA A4	12,3	19,8	28,9	54,5	85,0	122,5	-

Tige MAXIMA Zn. : $\gamma_{Ms} = 1,71$ pour M8 à M16 et $\gamma_{Ms} = 2,49$ pour M20 à M30 Tige MAXIMA A4 : $\gamma_{Ms} = 1,87$

[1] Le béton se trouvant dans la zone de l'ancrage est saturé en eau.

(2) Le béton est humide et le trou est rempli d'eau. La résine peut être injectée sans avoir à éliminer l'eau.

> $N_{Rd} = min(N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$ $\beta_N = N_{Sd} / N_{Rd} \le 1$

¬ Résistance à la rupture béton en bord de dalle

 $V_{Rd,c} = V_{Rd,c}^0$. f_b . $f_{B,V}$. $\Psi_{S-C,V}$

V ⁰ _{Rd,c}		Résistance à l'ELU - rupture béton bord de dalle à la distance aux bords minimale (C _{min})							
Dimensions	M8	M10	M12	M16	M20	M24	M30		
h _{ef}	80	90	110	125	170	210	280		
C _{min}	40	45	55	65	85	105	140		
Smin	40	45	55	65	85	105	140		
V ⁰ Rd,c	2,5	3,3	4,8	6,9	12,1	17,9	31,2		
4 -									

 $\gamma_{Mc} = 1.5$

Résistance à la rupture par effet de levier pour béton sec, humide (1) et immergé (2)

 $V_{Rd,cp} = V_{Rd,cp}^0$. f_b . Ψ_s . $\Psi_{c,N}$

V ⁰ _{Rd,cp}		Résistance à l'ELU rupture par effet de levier pour béton sec et humid						
Dimensions	M8	M10	M12	M16	M20	M24	M30	
h _{ef}	80	90	110	125	170	210	280	
-40°C à +40°C	21,3	33,3	53,3	80,0	100,0	153,3	186,7	
-40°C à +80°C	12,0	21,3	33,3	53,3	66,7	100,0	126,7	
						sistance		
		rup	ture par	effet de l	evier pou	r béton iı	nmergé	
-40°C à +40°C	-	-	45,5	68,6	85,7	131,5	160,0	
-40°C à +80°C	-	-	33,3	53,3	66,7	100,0	126,7	

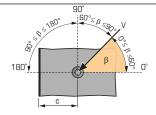
 $\gamma_{Mcp} = 1.5$

Résistance à la rupture acier

V _{Rd,s} Résistance à l'ELU - rupture a								
Dimensions	M8	M10	M12	M16	M20	M24	M30	
Tige MAXIMA Zn.	7,7	12,2	17,7	32,9	39,3	56,7	90,7	
Tige MAXIMA A4	7,3	11,9	17,3	32,7	51,3	73,1	-	

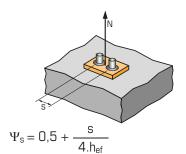
Tige MAXIMA Zn. : $\gamma_{Ms} = 1,43$ pour M8 à M16 et $\gamma_{Ms} = 1,5$ pour M20 à M30 Tige MAXIMA A4 : $\gamma_{Ms} = 1,56$

> $V_{Rd} = min(V_{Rd,c}; V_{Rd,cp}; V_{Rd,s})$ $\beta_V = V_{Sd} / V_{Rd} \le 1$


 $\beta_N + \beta_V \le 1.2$

fb INFLUENCE DE LA RESISTANCE DU BETON

Dimensions	M8	M10	M12	M16	M20	M24	M30
C20/25	1	1	1	1	1	1	1
C30/37	1	1	1	1	1,18	1,07	1,2
C50/60	1	1	1	1	1,53	1,22	1,79

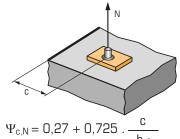

INFLUENCE DE LA DIRECTION DE LA CHARGE DE **CISAILLEMENT**

Angle β [°]	f _{β,V}
0 à 55	1
60	1,1
70	1,2
80	1,5
90 à 180	2

SPIT Méthode CC (valeurs issues de l'ETE)

INFLUENCE DE L'ENTRAXE SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON

MAXIMA


 $s_{min} < s < s_{cr,N}$ $s_{\text{cr},N}=2.h_{\text{ef}}$

 Ψ_{S} doit être utilisé pour chaque entraxe agissant sur le groupe de chevilles.

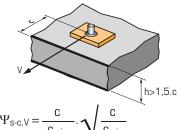
ENTRAXE S	S Coefficient de réduction S Béton non fissu					
Dimensions	M8	M10	M12	M16		
40	0,63					
45	0,64	0,63				
55	0,67	0,65	0,63			
65	0,70	0,68	0,65	0,63		
85	0,77	0,74	0,69	0,67		
105	0,83	0,79	0,74	0,71		
140	0,94	0,89	0,82	0,78		
160	1,00	0,94	0,86	0,82		
180		1,00	0,91	0,86		
220			1,00	0,94		
250				1,00		

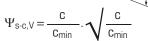
ENTRAXE S	Coefficient de réduction Ψ _s Béton non fissuré							
Dimensions	M20	M24	M30					
85	0,63							
105	0,65	0,63						
140	0,71	0,67	0,63					
160	0,74	0,69	0,64					
180	0,76	0,71	0,66					
220	0,82	0,76	0,70					
250	0,87	0,80	0,72					
300	0,94	0,86	0,77					
340	1,00	0,90	0,80					
370		0,94	0,83					
450		1,00	0,90					
560			1,00					

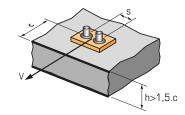
Ψ_{C.N.} INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON

 $c_{min} < c < c_{cr,N}$

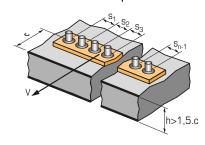
 $c_{cr,N} = h_{ef}$


 $\Psi_{\text{c,N}}$ doit être utilisé pour chaque distance aux bords agissant sur le groupe de chevilles.


DISTANCES AUX BORDS C		Coefficie	nt de réduc Béton no	ction $\Psi_{c,N}$ n fissuré
Dimensions	M8	M10	M12	M16
40	0,63			
45	0,68	0,63		
55	0,77	0,71	0,63	
65	0,86	0,79	0,70	0,66
85	1,00	0,95	0,83	0,76
90		1,00	0,86	0,79
110			1,00	0,91
125				1,00


DISTANCES AUX BORDS C	Coefficie	nt de réduc Béton no	ction $\Psi_{\text{c,N}}$ n fissuré
Dimensions	M20	M24	M30
85	0,63		
105	0,72	0,63	
120	0,78	0,68	
140	0,87	0,75	0,63
170	1,00	0,86	0,71
210		1,00	0,81
250			0,92
280			1,00

Coefficient de réduction $\Psi_{\text{s-c.V}}$


$\Psi_{ ext{s-c,V}}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE CISAILLEMENT POUR LA RUPTURE BORD DE DALLE

$$\Psi_{\text{s-c,V}} = \frac{3.\text{c} + \text{s}}{6.\text{c}_{\text{min}}} \cdot \sqrt{\frac{\text{c}}{\text{c}_{\text{min}}}}$$

¬ Cas d'une cheville unitaire

									606		eton non	
$\frac{C}{C_{\text{min}}}$	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
$\Psi_{ extsf{s-c,V}}$	1,00	1,31	1,66	2,02	2,41	2,83	3,26	3,72	4,19	4,69	5,20	5,72

¬ Cas d'un groupe de 2 chevilles

										Béton non fissuré			
S Cmin	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2	
1,0	0,67	0,84	1,03	1,22	1,43	1,65	1,88	2,12	2,36	2,62	2,89	3,16	
1,5	0,75	0,93	1,12	1,33	1,54	1,77	2,00	2,25	2,50	2,76	3,03	3,31	
2,0	0,83	1,02	1,22	1,43	1,65	1,89	2,12	2,38	2,63	2,90	3,18	3,46	
2,5	0,92	1,11	1,32	1,54	1,77	2,00	2,25	2,50	2,77	3,04	3,32	3,61	
3,0	1,00	1,20	1,42	1,64	1,88	2,12	2,37	2,63	2,90	3,18	3,46	3,76	
3,5		1,30	1,52	1,75	1,99	2,24	2,50	2,76	3,04	3,32	3,61	3,91	
4,0			1,62	1,86	2,10	2,36	2,62	2,89	3,17	3,46	3,75	4,05	
4,5				1,96	2,21	2,47	2,74	3,02	3,31	3,60	3,90	4,20	
5,0					2,33	2,59	2,87	3,15	3,44	3,74	4,04	4,35	
5,5						2,71	2,99	3,28	3,71	4,02	4,33	4,65	
6,0						2,83	3,11	3,41	3,71	4,02	4,33	4,65	

Cas d'un groupe de 3 chevilles et plus

$$\Psi_{\text{s-c},\text{V}} = \frac{3.c \, + \, s_1 \, + \, s_2 \, + \, s_3 \, + \ldots + \, s_{\text{n-1}}}{3.n.c_{\text{min}}} \cdot \sqrt{\frac{c}{c_{\text{min}}}}$$